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Large-eddy simulation of a spatially 
growing boundary layer over an adiabatic 
flat plate at low Mach number 
F. Ducros, P. Comte, and M. Lesieur 
LEGI/Institut de Macanique de Grenoble, Grenoble, France 

A new subgrid-scale model giving nearly zero eddy-viscosity during the laminar and 
the transition stages of a f low is proposed on the basis of the structure-function 
model (M6tais & Lesieur 1992). With this new model, a large-eddy simulation (LES) 
of the complete transition of a quasi-incompressible boundary layer is presented. At 
a computational cost of about 80 CPU hours of Cray 2, statistics and visualizations 
indicate that the essential features of the transition process and of the turbulent 
motion are correctly captured. 
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Introduction 

Four years after the rev:iew by Kleiser and Zang (1991), numeri- 
cal simulation of transition in wall-bounded shear flows is still a 
challenge. It is often stated that transition involves smaller scales 
than developed turbulence, which already reaches the limits of 
the largest super computers currently available. The only direct 
numerical simulation (DNS) of the complete transition of a 
spatially growing boundary layer that we know about (Rai and 
Moin 1993) required 80D hours of Cray Y-MP per run. Neverthe- 
less, a multiblock grid was used in order to minimize unnecessary 
mesh refinement, the finest meshes lying in the transitional 
region. On the other hand, since Deardorff (1970), subgrid-scale 
turbulence models have permitted substantial cost reduction for 
(large-eddy) simulations of the turbulent regime. Our main objec- 
tive here is to advocate large-eddy simulations (LES) of the 
complete transition process down to the turbulent regime, with a 
model smart enough not to act during the early stages of transi- 
tion. For reasons of consistency with our investigations of high- 
Math number boundary layers (Ducros et al. 1993), we keep the 
same numerical methods and work at the lowest Mach number 
for which our code remains effective; i.e., M~ = 0.5. In the light 
of Morkovin (1961), this seems to be low enough to permit 
comparison with incompressible experiments and simulations, at 
least as a first approximation. 

This paper is organized as follows: in the first section, we 
briefly recall the compressible equations involved in LES and the 
modeling we adopt. Then, we detail our new subgrid model and 
provide an a-priori test ~Io prove the insensitivity of this model to 
such large-scale fluctuations as Tollmien-Schlichting waves. In 
the third section, we present a LES of the forced transition of a 
boundary layer at M= == 0.5 and R%i = 1000, with comparisons 
with incompressible data. 

Subgrid modeling 

Discretization onto a finite-difference computational grid 
amounts to the convolution with a discrete low-pass filter (box 
filter), hereafter denoted'. This operator commutes with time and 
space derivatives, at least to second-order accuracy. * The fil- 
tered compressible Navier-Stokes equations for an ideal gas are 
thus approximated by the pseudoconservative form 

aU oE. 
- -  + - -  = O, i ~  { 1 ,  2 ,  3}  ( 1 )  
Ot OX i 

with 

~ T(~, PUl, PU2, PU3, pe) (2) 
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The resolved fluxes Fi read 
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* Here, the mesh length and width are constant. Commutation 
with a/ax 1 and a/ax 3 are, therefore, exact. Commutation with 
a/ax 2 and a/at are only second-order accurate, because of grid 
stretching in the direction normal to the wall and the variable 
time step which ensures constant CFL. 
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with 

[ auj Oui 2 ] 
s,: = L + ° 7  - u)8,, (5) 

and the filtered equation_of state ~ = RpT. Closure of the system 
requires that the fluxes F i are computab_~le out of U; that__is, ~ and 
the Favre-filtered components ui = pui /P a=nd ~ = pe/~. We, 
therefore, introduce a subgrid-stress tensor 3 -  defined by 

~- i j  = - -  PUiUj + "PUi~lj (6) 

and close its deviatoric part with the aid of an eddy-viscosity 
coefficient vt(x, t): 

- p u i u j =  --[)llifij +'~l)tSij for i 4:j (7) 

As in the incompressible LES formalism, we introduce a macro- 
pressure 

1 ~, = ~ - ~ : , ,  (8)  

The ' ' macro temperature' ' 

1 

O = 7=- 2c.  ,Y-u (9) 

is computable thanks to Equation 3 rewritten as: 

-2u  + u'S 
= bc .~  + ~fi~Ul + (10) 

The filtered equation of state then reads 

3 ' , / - 5  
w = "ORO + ~l l  = "~RO (11) 

6 

with exact equality in the case of helium or argon. 
The energy equation is closed in an even cruder fashion, 

assuming 

---37- 
- (pe  + p ) u  i + IxS i,uj + k - -  = 

J ~xi 

L r r  Pr, J Ox i 
(12) 

with Pr t = Pr/= 1. The resolved fluxes are thus modeled as: 

"PUiU 1 + '~$8il -- [Ix Jr- ~])t]Sil 

= [)uiu 2 + I ~ i 2  -- [[.L Jr- -pp,]Si2 

[)uiu 3 + 17ff~i3 - [Ix + -pPt]Si3 

- -  ] + [  -Ix + _ 
[ r r  -PTPV' -~x~ 

(13) 

Filtered structure-function model 

Normand and Lesieur (1992) simulated transition of a boundary 
layer at Mach 5 thanks to the structure-function (SF) model 
proposed by M&ais and Lesieur (1992) without any compressibil- 
ity correction. This model reads 

pSF(x, t ) =  0.105CK3/2A[~22(X, A, t)] 1/2 (14) 

in which C r .-~ 1.4 denotes Kolmogorov's constant. F2(x, A, t) is 
the second-order structure function of the resolved velocity field 

at scale A 

~z(X, A, t ) =  < Ilft(x + r, t ) - f i ( x ,  t)  [[ E>,rll=a (15) 

evaluated over the four closest neighbors of point x on a plane 
parallel to the wall. This stencil is too local to be insensitive to 
growing eigenmodes during transition, although they were quite 
well resolved. The dominant instability at Mach 5 being inviscid 
in nature (Mack's second mode), this did not prevent transition as 
it would do at our Mach number 0.5. 

To remedy this without changing the philosophy of the struc- 
ture-function model (consistency with spectral models derived 
from EDQNM considerations in isotropic turbulence following 
Kolmogorov spectra) we propose to apply a high-pass filter onto 
u before computing its structure function. An exact Laplacian 
filter iterated n times would, in the Fourier space, multiply the 
energy spectrum E(k)  by k 4". This is simple enough to be 
included in the derivation of the SF model in M&ais and Lesieur 

Notation 

C/(x a) and 
H12(X1) 

E(k  c) 

ff2(x, A, t) and 
F2m.. (x, A, t) 

HP"(fD 

Lxl = 812 8 i ,  

Lx2Lx3 = 20 8i 
hi= = U=/a= 

= 0.5 
Re~ = 

p e o U o o ~ i / / l l , =  

= 1,000 
u~ To~ = 273K, 

p~, a~, 
and Ix=: 

friction coefficient and shape factor 

kinetic energy isotropic spectrum at the 
cut-off wave number k c = ~r/A 
second-order structure functions of fi 
and HP"(f=) 
resolved velocity field after its filtering 
by a discrete Laplacian iterated n times 
dimensions of the domain 

external Mach number 

inlet Reynolds number 

stream-wise velocity, temperature, den- 
sity, speed of sound, and dynamic vis- 
cosity at x 2 ~ oo 

81 
Rex 
~(x, t) 

¢ t 
Url, U2~ U 3 

Xl,  X 2, X 3 

Greek 

ZX Xz( X 2) 

vt(x, t), 
K,(x, t) 

p(x, t), 
p(x, t), 
T(x, t), 
Ix(T) 

displacement thickness, 8 i = 8 1 ( x  = 0 )  

stream-wise Reynolds number 
resolved velocity field (Favre filtered) 
components of the rms fluctuations of fi 
with respect to its time average (fi)(x) 
stream-wise, normal-to-the-wall, and 
span-wise coordinates of point x 

mesh size in the direction normal to the 
wall; Ax 1 and Ax3 are constant; A(x 2) 
= (AXlAX2AX3)173 
local eddy-viscosity and eddy-diffusi- 
vity coefficients 
density, pressure, temperature, and vis- 
cosity (given by Sutherland's law) 
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Figure 1 Values of a n (left) and 13 n (right) as a function of n 
for different realizations of O: 3-D white noise (triangles); initial 
condition (crosses); and self-similar stage (circles) in a DNS of 
isotropic turbulence at resolution 323; a spectral Laplacian filter 
would give o~ n = 1 and ~;n = 4n 

(1992), yielding a formulation analogous to Equation (14), up to 
the constant's value. Approximated by second-order centered 
finite differences 

Hpn(fi(X, t ) ) =  [ H P  1 C Z.O HR1.]fi(x, t )  (16)  

with n times 

/ - / P ' [ a ( x ) ]  = E [ a (x  - a x , )  - 2a (x )  + ~,(x + a x , ) ] ,  
i =  2 , 3  

(17)  

iterated Laplacian filters satisfy approximately laws of the form 

=~. -- lB.. (18) t?(k) kc 

Figure 1 shows that a .  = 40, and 13. = 3n is an acceptable fit for 
a representative set of flow fields, at least up to n = 4. These 
values do not seem to depend much on resolution. They yield 

vtFSF"(X, t )=  ~lnC~(3/2A[~ne.(X, A, t ) ]  1/2 (19) 

with 

n 0 1 2 3 4 
~/, 0.105 0.033 0.0071 0.0014 2.6 10 - 4  

F2HP.(X , A, t) being the structure function of the filtered re- 
solved field HP"(f=), computed as in Equation 15. 

Different tests (a priori and a posteriori) with different numer- 
ical methods show that the least dissipative filtered structure- 
function model which works corresponds to n = 3. The reader is 
referred to Comte et al. (1994) for comparisons between the FSF 3 
model and four other ]models in the case of incompressible 
mixing layers simulated at zero molecular viscosity with a spec- 
tral code (resolution 643): the FSF 3 model gives results very 
similar to the spectral model and the selective structure-function 
model proposed by Dav:id (1995). See also Lesieur and M6tais 
(1995) for a review, and Silvestrini et al. (1995) in which 
spatially growing simulations of an incompressible mixing layer 
are performed with the FSF 3 model. 

Figure 2 suggests that the FSF 3 model is consistent with the 
original SF model in the case of incompressible isotropic turbu- 
lence, treated with (nondissipative) pseudospectral methods. This 
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sp#~ctrol Laplacian / ,  
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t 

n 
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has recently been confirmed at resolution 643 . 
Superiority of FSF 3 for transitional flows is evident when 

looking at its asymptotic behavior in the case of a discrete 
longitudinal sine wave fii j k = U cos( to /+  dp) of pulsation to = 
kA = ~rk/k c and phase ~b~ ~ the long-wave limit to --* 0. For this 
signal, the SF model yields 

F'~(x, A, t )  = U2{[2 sin 2 ~b]to 2 + [4i cos ~b sin ~b]to 3 

+ [(½cos 2 ~b -  2sin z d~)+ 2i2(cos  z ~ b -  sin 2 ~ b ) ]  t o  4 

+d'(to5)}, (20) 

i.e., scales in general on to2. The eddy-viscosity given by the SF 
model then scales on to. On the other hand, 

"~2ne.(x, A, t )  = [2(cos to - 1 ) ] % ( x ,  A, t )  (21)  

which gives a scaling in 0) 2"+ 1 for the FSF n model. 

S p a t i a l l y  d e v e l o p i n g  b o u n d a r y  l ayer  

System 1, 2, 10, 11, 13, 19 is solved by means of the code 
developed by Normand and Lesieur (1992). This code is based on 
an explicit McCormack-type scheme, which is fourth-order accu- 
rate in space (and second-order accurate in time, see Gottlieb and 
Turkel 1976). In the case of a temporal boundary layer at Mach 
4.5, the growth rates of Mack's  second mode and its most 

' ' ' ' ' ' I 

E(t) 

-2 

-3 ~ . . . . .  k, , , 

Figure 2 Kinetic energy spectra in freely decaying turbulence 
simulated a zero molecular viscosity with the FSF 3 and SF 
models (resolution 323 ) 
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Figure 3 Localization of our calculation box with respect to a 
virtual leading e d g e  

amplified oblique subharmonics were predicted correctly (Ducros 
et al. 1993), which can be considered as a valuable validation. 

For the spatially growing simulation presented here, we con- 
sider a domain as sketched in Figure 3. Adherence and adiabatic- 
ity are prescribed at the wall: (fi = O and t)a.~//~X 2 = 0 for x 2 = 0). 
Nonreflective conditions (Thompson 1987) are used for all other 
boundaries, except in the spanwise direction x 3, where periodic- 
ity is enforced. At the inlet x 1 = 0, we impose, on the incoming 
characteristics, a laminar profile U,. (x  2) solution to the similar- . lain . . 
ity equations at M= = 0.5, with small-amphtude perturbations 
renewed every time step: 

U , ( 0 ,  X 2 ,  X 3 ,  t ) =  U / l a m ( X 2 )  

+5 lO-3ezo~i(x2) s in[ tot+ ~b(x2) ] 

+8  lO-3e30x~e-X=T(xz, x 3, t)U~ (22) 

~i(x 2) and ~b(x z) are the amplitude (normalized by U=) and 
phase profiles of the most amplified mode [two-dimensional 
(2-D) Tollmien-Schlichting waves] at M= = 0.5 and Re= = 1000, 
based on the displacement thickness 5i of U/~,=(x2). T is a 
random function (white noise) giving values between 0 and 1. 
Analogous forcing is applied to the pressure. 

The computational domain is sketched below. It extends from 
x =  0 to 812 8 i. Its other dimensions are L x =L x = 20 ~i, 
which is rather small. We have carefully checke~ 3 . the behavior of 
the upper boundary condition in this configuration (Ducros 1995). 
The resolution is Nxl = 650, Nx2 = 32, and Nx3 = 20. The meshes 

2.5 

2 < 6 1 ( x ~  

1.5 

j x / d e l t a  i 
1 ~ ,  , , i i i i , . . . i . . . 

0 200 400 600 800 
Figure 5 Streamwise distribution of the displacement thick- 
ness <51( x)> 

are uniform in the stream-wise and span-wise directions. Stretch- 
ing is applied in the direction normal to the wall, through 

0.3t I j - 1 
x2 ( j )=Lx21 .3_~q ,  "q Nx2-1  (23) 

Calculations and statistical results 

At t = 0, we impose a 2-D flow resulting from a 2-D calculation 
in the whole box. We perform the 3-D 2-D simulation up to a 
time corresponding to 2.35 advections of the domain at the speed 
of the T-S waves (0.35U=), which requires about 80 hours of 
CPU time on a Cray 2. Visualizations and time-averaged statis- 
tics are performed during the last 240~i/U= of the simulation, for 
which the influence of the initial conditions should not be 
significant. 

The time-averaged displacement thickness (~l(x))  and shape 
factor (H12(x)) are plotted in Figures 4 and 5. 

We have checked that (81(0)) = ~i, and that (~l(X)) grows 
a x z/2 during the laminar sta~e and approximately G ( X  0"76 

between 500 and 812 ~i (vs. x °as in Cousteix 1989). The shape 
factor is 2.8 for the laminar regime and 1.6 for the turbulent 
stage, to be compared with the values 2.6 and 1.5 found in 
Cousteix (1989), in the incompressible case. Transition occurs at 

3 x = 280 8 6 i.e., Re x = 600 10 (point A in Figure 4). 
The friction coefficient is plotted in Figure 6, together with 

1 / 2  1 / 6  the theoretical laws Cf = 0.664 Re~- and C / =  0.0368 Re~ 
for incompressible Blasius and turbulent profiles, respectively. 

The former law is well verified, which suggests that the model 
behaves correctly up to transition. Unfortunately, the usual over- 

2.52 ~ ~ ~  H 12(x)> A 

1.5 x/delto i 
i i i I 

0 200 400 600 800 
Figure 4 Spatial distribution of the shape factor (H12(x)) (A is 
l o c a t e d  at x = 2808 i) 
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Figure 6 Spatial distribution of the friction coefficient (Cf)(x~), 
averaged over time and the spanwise direction x 3 
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Figure 7 Time- and spanwise-averaged stream-wise velocity 
profiles, in wall units, for several streamwise positions 

shoot of Cf is not visible, and Cf decays too fast later. We 
believe that this is mainly due to the model, which seems to be 
too dissipative in the tmbulent regime. 

Figure 7 shows the spatial evolution of the mean stream-wise 
velocity prot"de in wall units, in function of Re~. The last profile 
is compared with the empirical law U += 2.44 In y + +  5., which 
confirms that the friction velocity is too low: we measured 
u~./U= = 0.038 for x = 550 8 i, to be compared with the value 
0.046 obtained by Spah~t (1988) in DNS at the same Reynolds 
number. 

Figure 8 shows profiles of rms velocity fluctuations normal- 
ized by u,, recorded at Re x --- 106. The horizontal coordinate is 
the distance to the wall Y2, divided by the local boundary-layer 
thickness 899 ~. Agreement with respect to the DNS of Spalart 
(1988) is acceptable for u~. As mentioned by Antonia et al. 
(1992), higher resolution is needed in order to get u~ and u~ 
correct. 

The Reynolds stress profiles are nearly constant throughout 
the layer (except near the wall, see Figure 9 where experimental 
results of Sabot and Comte-Bellot, 1976 are plotted). 
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Figure 8 Time- and spanwise-averaged profiles of rms veloc- 
ity fluctuation profiles compared to Spalart 's ( 1 9 8 8 )  

From the zoom shots, Figures 11 and 12, the period of the TS 
waves can be estimated to be about 21 8 i. The transition point A 
at x I = 280 8 i, beyond which the shape factor drops, corre- 
sponds to the beginning of the three-dimensionalization of these 
waves. The first A structure forms at about 300 8i, in the 
staggered arrangement. This can be seen as evidence of a H-type 
mode (Herbert 1988). More precisely, in this region, the turbulent 
kinetic energy grows exponentially with x I at a rate % = 1.95 
10 -2 8?  1 close to the value 2.2 10 -2  found by Herbert for the 
most amplified oblique subharmonic mode of secondary instabil- 
ity. The domain is, nevertheless, too narrow to respect the 
span-wise period of this mode (k z = 1.5h x = 31.5 8~, against 
L z = 20 8i). Note also in Figures 11 and 12 the small scales, 
which form at about x 1 = 400 8 i. 

The low-pressure isosurfaces (Figure 11) are well correlated 
spatially with the head of the A-shaped structures materialized by 
the isosurfaces of stream-wise vorticity: high-vorticity magnitude 
can be found in the same place. Vertical pumping of low fluid 

0 

- 0 . 2  

V i s u a l i z a t i o n s  - o.  4 

T I I 

o Sobot & Comte-Bel lot 

In all the figures to corrle, the boundary layer flows from left to 
- 0 . 6  

right, and the domain has been duplicated in the span-wise 
direction in order to make the flow topology more evident. Figure 
10 shows contours of u~ on the plane x 2 = .27 8 i (i.e., x~ = 
11.8). Up to 280 8i, the span-wise stripes correspond to TS - 0 . 8  , , , I , , , I , , , I , , , 1 , 
waves. A structures are visible from 280 to 350 8 i. Further 0 0.2 0.4 0.6 0.8 
downstream, stream-wise streaks are visible. Their span-wise Figure 9 Reynolds stress profiles (~U':,)/(Ulr,,U2r,.,=)together 
spacing is = 130 wall units, the commonly accepted value being with the experimental results of Sabot and Comte-Bellot (1976) 
100. reported in Moin and Kim (1981) 

Figure 10 Horizontal slice at x= = 0.278i (x2 + = 11.8) of the stream-wise velocity fluctuations ~ ;  the whole domain is shown 
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Figure 11 Zoom on the t ransi t ional  zone between 149 and 454 ~i, showing,  f rom the top, isosurfaces I~oxl I = 0 . 1 u J ~ i  (dark gray) 
and p = 0.992P® (l ight gray) 

Figure 12 Same v i ew  as before, w i th  isosurface u 2 = 0.007U= instead of  the low-pressure isosurface 

Figure 13 Close-up between 260 and 375 $i showing,  still f rom the top, isosurfaces fJ )x1 = +0.15U=/B i ( l ight gray) and ~Oxl = 0.15 U=/8 i 
( l ight gray), plus the most  3-D vor tex  l ines 

Figure 14 Perspective v i ew  of  the t ransi t ional  zone between 474 and 553 8~. showing,  again, isosurfaces co x = +0.15U®/~ i ( l ight and 
dark gray, respectively), the most  3-D vor tex  l ines and a vert ical slice wi th  ¢Ox3 contours 

346 Int. J. Heat and Fluid Flow, Vol. 16, No. 5, October 1995 



LES o f  a spat ia l ly  g row ing  boundary  layer: F. Ducros et aL 

Figure 15 
gray) 

Same as Figure 12, without the iso-l(O~ll surface, replaced by isosurface v t = 0.331~=/p® given by the FSF 3 model, (dark 

Figure 16 Same as Figure 15, but with v t computed a priori with the original SF model, from the same velocity field 

takes places between the legs of these A structures, as shown in 
Figure 12: notice white patterns of positive value in between the 
dark A-shaped structure:s. However, the level of three-dimen- 
sionality is still very low, as shown by the very small deforma- 
tion of the vortex lines i~L Figure 13. This is obviously no longer 
the case further downstream: Figure 14 shows isosurfaces of fox, 
stretched at the wall, in the stream-wise direction. Ejections are 
visible from the span-wise vorticity contours on the vertical slice 
in Figure 14. Maximum values of (o x are found immediately 

• . 3 . 

downstream of the tip of the hairpin vortices materialized by the 
vortex lines in Figure 14. This confirms the classical interpreta- 
tion of transition to turbulence in terms of break-down of local 
mixing layers downstreara of the hairpin vortices. 

Spatial distribution of eddy-viscosities 

Figure 15 shows an isosu:rface of eddy-viscosity, together with an 
isosurface of u~. The latter is there to show where the FSF 3 
model acts most. This surface is repeated in Figure 16, which 
also shows an isosurface of the eddy-viscosity that would give 
the original SF model from the same resolved velocity field. The 
threshold is, of course, the same as in Figure 15. In the turbulent 
part of the domain (x  <; 400 ~i), both models give about the 
same values of v r This suggests that the constant of the FSF 3 
model is correct. In the: transitional region, the SF model is 
obviously more dissipative. Moreover, restarting the simulation 
with the SF model instead of the FSF 3 model rapidly yields 
complete relaminarization of the flow. 

Conclusions 

A low-resolution simulation of the transition of a quasi-incom- 
pressible boundary layer is presented. Thanks to the filtered 
structure function model proposed in this paper, all stages of 
transition are qualitatively reproduced, although there is only one 
mesh line in the viscous sublayer (first point at x~- ~ 3). This 
would not have been possible with such a low level of upstream 
forcing, either with Smagorinsky's model or the SF model, at 
least at comparable numerical cost. Statistics, nevertheless, show 
excessive dissipation in t]ae late-transition and turbulent regimes, 
suggesting that the new model is still overdissipative (see Lam- 
ballais et al. 1995, or Comte et al. 1995 for improvement in this 
respect). The fact that the domain is too narrow to permit the 
development of a complete spanwise period of H-mode might 
also contribute to this tendency. Finally, no visible compressibil- 
ity effects have been noticed at Mach 0.5. 
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